CNN Based Monocular Depth Estimation

نویسندگان

چکیده

In several applications, such as scene interpretation and reconstruction, precise depth measurement from images is a significant challenge. Current estimate techniques frequently provide fuzzy, low-resolution estimates. With the use of transfer learning, this research executes convolutional neural network for generating high-resolution map single RGB image. typical encoder-decoder architecture, when initializing encoder, we features extracted high-performing pre-trained networks, well augmentation training procedures that lead to more accurate outcomes. We demonstrate how, even with very basic decoder, our approach can complete maps. A wide number deep learning approaches have recently been presented, they showed promise in dealing classical ill-posed issue. The studies are carried out using KITTI NYU Depth v2, two widely utilized public datasets. also examine errors created by various models order expose shortcomings present which accomplishes viable performance on besides v2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monocular Vision Based Relative Depth Estimation for Hand Gesture Recognition

In this paper, we focus on real-time relative hand depth estimation with cluttered backgrounds and variable illumination for a target application to hand pushing and pulling detection. The task is characterized by a lack of consistent internal contrast in the hand combined with the complex background. We adopt a detection-and-registration strategy to predict frame-toframe scaling factor and mak...

متن کامل

Towards Domain Independence for Learning-based Monocular Depth Estimation

Modern autonomous mobile robots require a strong understanding of their surroundings in order to safely operate in cluttered and dynamic environments. Monocular depth estimation offers a geometry-independent paradigm to detect free, navigable space with minimum space and power consumption. These represent highly desirable features, especially for micro aerial vehicles. In order to guarantee rob...

متن کامل

Depth Estimation Using Monocular and Stereo Cues

Depth estimation in computer vision and robotics is most commonly done via stereo vision (stereopsis), in which images from two cameras are used to triangulate and estimate distances. However, there are also numerous monocular visual cues— such as texture variations and gradients, defocus, color/haze, etc.—that have heretofore been little exploited in such systems. Some of these cues apply even...

متن کامل

Bayesian depth estimation from monocular natural images.

Estimating an accurate and naturalistic dense depth map from a single monocular photographic image is a difficult problem. Nevertheless, human observers have little difficulty understanding the depth structure implied by photographs. Two-dimensional (2D) images of the real-world environment contain significant statistical information regarding the three-dimensional (3D) structure of the world t...

متن کامل

Aperture Supervision for Monocular Depth Estimation

We present a novel method to train machine learning algorithms to estimate scene depths from a single image, by using the information provided by a camera’s aperture as supervision. Prior works use a depth sensor’s outputs or images of the same scene from alternate viewpoints as supervision, while our method instead uses images from the same viewpoint taken with a varying camera aperture. To en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: E3S web of conferences

سال: 2021

ISSN: ['2555-0403', '2267-1242']

DOI: https://doi.org/10.1051/e3sconf/202130901070